Accepted Manuscript

Accepted Manuscript (Uncorrected Proof)

Title: Melatonin as a Neuroprotective Adjunct in Bipolar Patients Undergoing Electroconvulsive

Therapy: A Double-Blind Randomized Controlled Trial

Running Title: Melatonin and Cognitive Outcomes in ECT

Authors: Maryam Shahrokhi¹, Robabeh Soleimani², Mahdi Ahmadinia³, AmirMahdi Rezapour⁴, Saeed Taatirad², Faezeh Jamali⁵, Hamed Jafari Mohamadabadi⁶, Roja Qobadighadikolaei^{7,*}

- 1. Department of Clinical Pharmacy, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
- 2. Department of Psychiatry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- 3. Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- 4. Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
- 5. Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- 6. Department of Psychiatry, Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
- 7. Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.

*Corresponding Author: Roja Qobadighadikolaei, Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. Email: roja.ghobadi@gmail.com

To appear in: Basic and Clinical Neuroscience

Received date: 2025/08/26

Revised date: 2025/10/26

Accepted date: 2025/11/10

This is a "Just Accepted" manuscript, which has been examined by the peer-review process and has been accepted for publication. A "Just Accepted" manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Basic and Clinical Neuroscience provides "Just Accepted" as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

Maryam Shahrokhi, M., Soleimani, R., Ahmadinia, M., Rezapour, A., Taatirad, S., Jamali, F., et al. (In Press). Melatonin as a Neuroprotective Adjunct in Bipolar Patients Undergoing Electroconvulsive Therapy: A Double-Blind Randomized Controlled Trial. Basic and Clinical Neuroscience. Just Accepted publication Jul. 10, 2026. Doi: http://dx.doi.org/10.32598/bcn.2026.8317.1

DOI: http://dx.doi.org/10.32598/bcn.2026.8317.1

Abstract

Background: Bipolar disorder (BD) is frequently treated with electroconvulsive therapy (ECT), which, despite its efficacy in severe mood episodes, is often complicated by cognitive impairment. To our knowledge, no standard prophylactic therapy currently exists to prevent these adverse effects. Melatonin, with established antioxidant and neuroprotective properties, may attenuate ECT-related cognitive dysfunction.

Methods: In this randomized, double-blind, placebo-controlled trial, 46 inpatients with BD undergoing ECT were allocated 1:1 to receive either melatonin (3 mg nightly) or identical placebo capsules. Study medication was administered from 24 h before the first ECT session until 24 h after the final session. Cognitive outcomes were assessed using the Mini-Mental State Examination (MMSE) and its subdomains at baseline and after each ECT session. Secondary outcomes included systolic and diastolic blood pressure. Adverse events were recorded throughout the trial.

Results: Compared with placebo, melatonin significantly improved global cognition across the ECT course (group × time interaction, p=0.021). At the final session, patients receiving melatonin demonstrated higher MMSE scores (27.9 \pm 1.8 vs. 26.5 \pm 2.0), with the strongest improvements in recall (+0.6 points, p=0.012) and attention/calculation (+0.5 points, p=0.018). Blood pressure (BP) values remained stable (Δ SBP: -1.2 \pm 3.1 mmHg melatonin vs. -0.8 \pm 2.9 mmHg placebo, p=0.64), and melatonin was also well tolerated.

Conclusion: Adjunctive melatonin reduced ECT-related cognitive impairment in BD patients, with pronounced benefits in memory and attention, while maintaining an excellent safety profile. These findings support melatonin as a simple, inexpensive, and widely accessible therapeutic option to support cognition in this vulnerable population.

Keywords: Bipolar disorder; Electroconvulsive therapy; Cognitive impairment; Melatonin; Adjunctive Therapy

Highlights

- 1. Melatonin improved overall cognition in bipolar patients receiving ECT
- 2. Greatest cognitive gains were seen in recall and attention/calculation domains
- 3. Melatonin was well tolerated with no significant adverse effects observed
- 4. No hemodynamic instability occurred during ECT sessions with melatonin use
- 5. Melatonin offers a safe adjunctive option to reduce ECT-related cognitive decline

Plain Language Summary

Electroconvulsive therapy (ECT) is a powerful and often life-saving treatment for people with severe bipolar disorder, especially when other treatments do not work. However, one of the biggest problems with ECT is that it can cause memory problems and difficulties with thinking, which makes many patients and families worried about choosing this treatment.

Melatonin is a natural hormone produced by the body, best known for regulating sleep. But research has also shown that melatonin has protective effects on the brain, including reducing stress from harmful molecules (oxidative stress) and helping nerve cells work better. Because of these properties, we wanted to test if melatonin could help protect patients from memory and thinking problems caused by ECT.

In our study, 46 patients with bipolar disorder who were scheduled to receive ECT took part. Half of them received melatonin and the other half received a placebo (an inactive pill) during their treatment course. We measured their thinking and memory using a standard test before and after ECT. Patients who took melatonin showed better performance, especially in remembering words and focusing on tasks, compared with those who took a placebo. Importantly, melatonin was safe and caused no serious side effects.

These findings suggest that melatonin, which is inexpensive and widely available, could be a simple way to make ECT safer and easier for patients by protecting their memory. If confirmed in larger studies, this approach could encourage more patients to accept ECT when it is needed, improving treatment outcomes and quality of life.

6. Introduction

BD is a severe, chronic mood illness affecting a vast population worldwide. Global burden estimates exceed 40 million affected individuals (Jiang et al., 2025; Millett et al., 2025), and BD ranks among the leading causes of disability. Importantly, cognitive deficits in attention, memory, and executive function are a core and persistent feature of BD, present in roughly 40–60% of patients (Burdick et al., 2014; Millett et al., 2025). These impairments endure even during euthymic periods and strongly predict poorer psychosocial function and reduced quality of life (Nicoloro-SantaBarbara et al., 2023). Electroconvulsive therapy (ECT) is one of the most effective treatments for severe, treatment-resistant mood episodes, including bipolar depression and mania (Fetahovic et al., 2025). However, its utility is tempered by adverse cognitive sequelae: ECT commonly induces retrograde and anterograde memory impairment. For example, guidelines note that ECT frequently causes loss of autobiographical memory and short-term learning deficits (Porter et al., 2020), and up to ~60% of patients report new memory problems in the weeks following treatment (Porter et al., 2020). These cognitive side effects can substantially worsen overall functioning and diminish the therapy's quality-of-life benefits.

The mechanisms underlying ECT-induced cognitive dysfunction are not fully understood but are believed to be multifactorial. ECT-triggered seizures appear to provoke acute neurobiological stress. Recent work suggests that ECT increases mitochondrial activity and generates a surge of reactive oxygen species (ROS), along with transient elevations in pro-inflammatory cytokines (Freire et al., 2017). In parallel, ECT alters neurotransmitter systems (including glutamate, GABA, and monoamines) and neurotrophic signaling in cortico-limbic circuits (Fetahovic et al., 2025; Van Den Bossche et al., 2019). Together, these changes may transiently disrupt neuronal homeostasis

and plasticity, contributing to memory lapses. In response, researchers have trialed various pharmacologic adjuncts to blunt these effects. For instance, the NMDA antagonist memantine and thyroid hormone (liothyronine, T3) have shown some promise in limited trials (Verdijk et al., 2022). Small studies also tested acetylcholinesterase inhibitors (e.g., donepezil), with one review noting improved cognitive scores in most trials (Verdijk et al., 2022). Nevertheless, systematic reviews underscore that the evidence is weak and inconsistent: published trials vary widely in design and quality, and many findings remain contradictory or of low certainty (Freire et al., 2017; Verdijk et al., 2022).

Melatonin is an endogenous indoleamine hormone best known for regulating circadian rhythms, but it also has potent antioxidant and neuroprotective actions. Its lipophilic structure allows it to cross the blood-brain barrier and directly scavenge a broad spectrum of free radicals (Carretero et al., 2023; Kołodziejska et al., 2025). Melatonin elevates endogenous antioxidant defenses and inhibits pro-oxidant enzymes (Kołodziejska et al., 2025). It also exerts anti-inflammatory effects: it suppresses activation of microglia and the NF-κB pathway, thereby lowering release of inflammatory cytokines (Sivamaruthi et al., 2023). These properties suggest melatonin could protect against oxidative and inflammatory brain injury induced by ECT seizures. Empirical evidence for melatonin's cognitive benefits is mixed. In some studies, adjunctive melatonin improved subjective memory or cognitive scores: for example, depressed patients taking melatonin with antidepressants reported less perceived cognitive dysfunction (Colwell et al., 2022; Targum et al., 2015). Conversely, in one RCT of depressed patients undergoing ECT, low-dose melatonin (3 mg/day) was *less* effective than memantine at preventing post-ECT cognitive decline (Sarraf et al., 2020). In another trial (in hemodialysis patients) melatonin produced no significant benefit over placebo on cognition (Hatamkhani et al., 2024). On the other hand, studies in other contexts

hint at neuroprotective effects: for instance, melatonin has been shown to reduce cognitive deterioration in Alzheimer's and Parkinson's disease models (Talbot et al., 2023), and animal experiments demonstrate that melatonin can preserve hippocampal neuronal integrity and memory after brain injury (Chang et al., 2021).

Despite its promise, no standard prophylactic treatment for ECT-related cognitive impairment exists. Prior studies have been limited by small sample sizes and heterogeneity in ECT techniques, drug dosing, and cognitive assessments (Verdijk et al., 2022). Thus, a clear gap remains: rigorous, placebo-controlled trials of melatonin in the ECT context are scarce. The present study aims to fill this gap by systematically evaluating whether adjunctive melatonin can mitigate cognitive side effects of ECT in bipolar patients. We hypothesize that patients receiving melatonin will demonstrate better cognitive performance after ECT (less memory and executive impairment) than those receiving a placebo.

7. Materials and Methods

7.1.Study Design and Setting

This study was a randomized, double-blind, placebo-controlled clinical trial conducted to assess the potential protective effects of melatonin on cognitive impairments associated with electroconvulsive therapy (ECT) in patients with BD. The trial was performed at Shafa Hospital, Rasht, Iran, a tertiary psychiatric referral center, between June 2023 and June 2024. Patients with a confirmed diagnosis of BD who were scheduled to undergo ECT were consecutively recruited and randomized to either the melatonin or placebo group.

The protocol was reviewed and approved by the Research Ethics Committee of Guilan University of Medical Sciences (approval code: IR.GUMS.REC.1402.080). The trial was prospectively registered in the Iranian Registry of Clinical Trials (IRCT) under the registration number IRCT20220516054879N5 (registration date: May 27, 2023). Written informed consent was obtained from all patients or their legal guardians before enrollment, following a detailed explanation of the study's objectives, procedures, potential benefits, and risks. All study procedures adhered to the ethical standards of the institutional review board and the principles of the Declaration of Helsinki.

7.2. Participants

Adult patients aged 18 years or older with a clinician-confirmed diagnosis of BD according to the updated *DSM-5-TR* criteria (American Psychiatric Association, 2022) were eligible if they were scheduled to undergo an acute course of electroconvulsive therapy (ECT) at Shafa Hospital, Rasht, Iran (American Psychiatric Association, 2022; First et al., 2022). Exclusion criteria comprised comorbid neurological disorders (e.g., epilepsy or dementia), severe systemic medical conditions such as significant hepatic, renal, or cardiac dysfunction, active gastrointestinal ulceration, uncontrolled hypertension, ongoing substance (alcohol or illicit drug) use, known hypersensitivity to melatonin, pregnancy or breastfeeding, concurrent use of medications with pronounced cognitive or sedative effects (e.g., high-dose benzodiazepines or anticholinergic agents), and sensory or language impairments that precluded completion of neurocognitive assessments. All eligible participants, or their legal guardians, provided written informed consent before enrollment, after receiving comprehensive explanations regarding the study objectives, procedures, potential risks, and anticipated benefits. Participants were recruited consecutively during routine clinical

evaluation and screened according to the predefined eligibility criteria. A history of prior ECT was not considered an exclusion criterion in this study.

7.3. Screening and Enrollment

Potential participants were identified consecutively from patients referred for electroconvulsive therapy (ECT) and were initially evaluated by the attending psychiatrists in collaboration with a study pharmacist. The diagnostic process involved a structured clinical interview to confirm BD according to DSM-5-TR criteria, along with a comprehensive review of past medical history and current medications. A complete physical examination, including measurement of vital signs, was performed to ensure clinical stability. Baseline safety assessments included a standard 12-lead electrocardiogram to rule out conduction abnormalities, particularly bradyarrhythmia, as well as routine laboratory investigations of renal and hepatic function. Women of childbearing potential underwent a pregnancy test before randomization, and toxicology screening was conducted when clinically indicated to exclude active alcohol or illicit drug use. Final eligibility was verified and recorded prospectively in study source documents and case report forms. Informed consent was obtained from all participants or their legal guardians before trial enrollment, following institutional guidelines and internationally accepted recommendations for ethical conduct in clinical trials and the use of ECT (First et al., 2022).

7.4. Randomization and Blinding

Participants meeting eligibility criteria were randomized in a 1:1 ratio to receive either melatonin or a placebo alongside standard ECT. The randomization sequence was generated using a computer-based system with permuted blocks of four, implemented via a validated external

randomization platform (Kim & Shin, 2014). Allocation concealment was ensured through sequentially numbered, opaque, sealed envelopes (SNOSE), prepared by a research coordinator who was not involved in patient recruitment, administration, or outcome assessments. Each envelope was opaque, tamper-proof, and stored centrally in the pharmacy, only opened upon formal patient enrollment—this approach effectively prevents selection bias (Clark et al., 2021).

The study was designed as a double-blind trial: neither the patients, the treating psychiatrists administering ECT, nor the cognitive evaluators were aware of the treatment allocations. Melatonin and placebo capsules were identical in appearance, packaging, and labeling to maintain blinding integrity. Data analysts remained blinded to group identities (coded as Group A/Group B) until database lock and completion of the pre-specified statistical plan, following CONSORT guidelines for reporting blinding and intervention similarity (Hopewell et al., 2025).

Following participant consent, the study nurse retrieved the next envelope from the pharmacy, linked it to the corresponding medication kit, and administered the first dose per protocol, without involvement in eligibility determination or outcome assessments. Emergency unblinding was only possible through the pharmacy director with formal documentation; notably, no such events occurred. This protocol clearly separates allocation concealment from blinding and safeguards against both selection and performance biases (Vorland et al., 2021).

The sample size was calculated a priori based on conventional statistical standards. Using a two-tailed test with $\alpha = 0.05$ and power of 80%, and assuming a medium effect size (Cohen's d ≈ 0.5), an estimated 34 participants per arm would be required to detect a clinically meaningful difference in cognitive outcomes (Hartman et al., 2017). To account for possible attrition ($\sim 10-15\%$), the target enrollment was increased, resulting in 46 participants randomized and followed to study

completion. The calculation followed the standard formula for comparing two independent means in superiority trials:

$$\frac{((Z(1-\alpha/2)+Z(1-\beta))^2\times(\sigma^2+\sigma_2^2))}{\Delta^2}=n \text{ per group}$$

where $\sigma 1, \sigma 2$ are group standard deviations, Δ is the expected mean difference, and Z denotes standard normal quantiles (Serdar et al., 2021). Fig. 1 shows patient screening, randomization, allocation, follow-up, and analysis.

7.5.Intervention Protocol

Participants randomized to the intervention arm received oral melatonin 3 mg capsules (Tehran Darou Pharmaceutical Co., Tehran, Iran) once nightly at $21:00 \pm 30$ minutes to synchronize with the endogenous circadian rhythm of melatonia secretion. The first dose was administered 24 hours before the initiation of the ECT course and treatment continued daily until 24 hours after the final ECT session, yielding an average exposure duration of approximately two weeks. Capsules were dispensed in sealed, coded blister packs by the hospital pharmacy, with identical-appearing placebo capsules produced by the same company to ensure indistinguishability. Matching was confirmed for capsule size, shape, color, taste, odor, and packaging to maintain blinding integrity. Adherence was reinforced through directly observed therapy: all doses were administered under the supervision of trained ward nurses, who documented administration times in case report forms (CRFs). Missed doses, if any, were recorded along with reasons, and participants were not allowed to self-administer medication. To safeguard trial integrity, returned packs were counted to verify compliance. The control group received placebo capsules under identical procedures. Both melatonin and placebo were stored at controlled room temperature $(20-25^{\circ}C)$ and monitored for

stability throughout the study. The double-blind design extended to all treating clinicians, outcome assessors, and data analysts.

ECT procedures were standardized across both arms. Treatments were delivered using a Thymatron® System IV device (Somatics LLC, Lake Bluff, IL, USA) with brief-pulse, constant-current stimulation and bilateral electrode placement. Stimulation parameters were individualized by the half-age method to estimate seizure threshold, to minimize cognitive adverse effects. Each session was titrated to achieve a motor seizure of at least 25 seconds and an EEG-confirmed seizure of ≥30 seconds, with adequacy determined via cuff-isolated limb observation and EEG monitoring. Patients typically underwent six ECT sessions over the treatment course, consistent with standard psychiatric practice and contemporary international ECT guidelines (American Psychiatric Association, 2022; Choe et al., 2020).

7.6.Outcome Measures

The primary outcome was the change in global cognitive performance, assessed by the MMSE, measured repeatedly at baseline (within 24 hours before the first ECT session) and 24 hours after each ECT session, including the sixth (final) session. The MMSE, a standardized 30-point screening instrument evaluating domains such as orientation, attention, memory, language, and visuospatial ability, is well-established in clinical research. For this study, the validated Persian version of the MMSE with demonstrated high internal consistency (Cronbach's $\alpha = 0.81$) and construct validity in Iranian populations was utilized, administered by a trained research assistant blinded to treatment assignment (Khodamoradi et al., 2020).

Secondary outcomes included changes in systolic blood pressure (SBP) and diastolic blood pressure (DBP), measured at the same timepoints as the cognitive assessments. BP monitoring was incorporated as a secondary safety parameter to evaluate possible hemodynamic effects of melatonin during the ECT course, given its known influence on circadian regulation and vascular tone. BP was recorded with participants seated after resting for at least five minutes, using a calibrated automated digital sphygmomanometer (Beurer BM28; Beurer GmbH, Ulm, Germany). The measurement protocol adhered strictly to the American Heart Association (AHA) recommendations for accurate and standardized BP assessment, which emphasize rest period, correct cuff size, and proper body positioning (Asmar et al., 2024; Muntner et al., 2019). All BP measurements were performed by experienced, blinded staff, and the measurement devices were calibrated weekly to ensure precision and reproducibility.

7.7. Statistical Analysis

Data were analyzed using SPSS version 26 (IBM Corp., Armonk, NY, USA). Continuous variables are reported as mean \pm standard deviation (SD) and categorical variables as frequencies and percentages. Baseline characteristics were compared with independent-samples t tests or chi-square tests, as appropriate. Changes in total MMSE across ECT sessions were examined with linear mixed-effects models including group, time, and their interaction. Paired t tests assessed within-group changes from baseline, and Welch's t tests were used for between-group comparisons at each session. The Holm–Bonferroni method was applied to control for multiple comparisons. Subdomain-level MMSE scores were analyzed by paired t tests for within-group changes (Baseline vs. ECT6) and by Welch's t tests for between-group differences at ECT6 and for difference-inchange values (Δ Mel – Δ Plac). Results were summarized in tables and illustrated with forest plots.

For secondary physiological outcomes (SBP and DBP), pre–post changes were evaluated with paired t tests, and between-group differences in change scores with independent-samples t tests. Findings were visualized with line plots (mean \pm 95% CI) and bar plots of Δ -values.

8. Results

8.1. Baseline Characteristics

A total of 46 participants were randomized, with 23 assigned to melatonin and 23 to placebo. Demographic and physiological characteristics were well balanced across treatment arms. The average age of participants was comparable between groups, and sex distribution did not differ significantly.

For baseline cognitive function, both groups demonstrated similar performance on the MMSE. subdomains. Orientation to time and place, registration, and most language domains were near ceiling levels, whereas the greatest variability was observed in recall and attention/calculation tasks. These patterns are consistent with prior reports of subtle baseline cognitive deficits in patients with BD undergoing ECT. The mean total MMSE score was 26.6 ± 1.9 in the melatonin group and 26.2 ± 2.0 in the placebo group, with no statistically significant difference. Physiological measures, including systolic and diastolic BP, were also comparable between groups at baseline. Detailed baseline characteristics are summarized in Table 1.

Table 1. Baseline demographic, cognitive, and physiological characteristics of participants

Variable	Melatonin (n=2	23) Placebo (n=23)	p-value
Demographics			
Age (years, mean \pm SD)	38.6 ± 7.4	38.5 ± 7.1	0.982
Female sex, n (%)	12 (52.2%)	7 (30.4%)	0.769
Cognitive performance (MMSE subdomain	ns)	, 0	(
Orientation to Time (0–5)	4.6 ± 0.6	4.5 ± 0.7	0.613
Orientation to Place (0–5)	4.7 ± 0.5	4.6 ± 0.6	0.552
Registration (0–3)	3.0 ± 0.0	3.0 ± 0.0	1.000
Attention & Calculation (0–5)	3.6 ± 0.9	3.5 ± 0.9	0.684
Recall (0-3)	1.6 ± 0.8	1.5 ± 0.8	0.731
Naming (0–2)	2.0 ± 0.0	2.0 ± 0.0	1.000
Repetition (0–1)	1.0 ± 0.0	1.0 ± 0.0	1.000
3-Stage Command (0–3)	3.0 ± 0.0	3.0 ± 0.0	1.000
Reading (0–1)	1.0 ± 0.0	1.0 ± 0.0	1.000
Writing (0–1)	1.0 ± 0.1	1.0 ± 0.1	0.818
Visuospatial (0–1)	1.0 ± 0.0	1.0 ± 0.0	1.000
Total MMSE (0–30)	26.6 ± 1.9	26.2 ± 2.0	0.441
Physiological variables			
Systolic BP (mmHg)	126 ± 12	125 ± 11	0.77۲
Diastolic BP (mmHg)	78 ± 8	77 ± 7	0.81٣

Abbreviations: MMSE, Mini-Mental State Examination; BP, blood pressure; SD, standard deviation.

8.2.Primary Outcome

8.2.1. Change in Total MMSE Score Across ECT Sessions

Across the trial, between-group comparisons demonstrated a consistent but nonsignificant trend favoring melatonin over placebo at all time points (Table 2).

Table 2. Between-group Comparison of MMSE Scores Across ECT Sessions

C	Melatonin	Placebo	Mean	95%	CI 95%	CIF	p-	C!-
Session	(mean)	(mean)	Difference	Low	High	(1,44)	value	Sig
Baseline	26.6	26.2	0.4	-0.40	1.20	1.02	0.321	
ECT1	26.5	25.9	0.6	-0.19	1.39	2.37	0.131	
ECT2	27.0	25.8	1.2	0.42	1.98	9.46	0.003	**
ECT3	27.3	26.0	1.3	0.50	2.10	10.26	0.002	**
ECT4	27.16	26.3	0.86	0.06	1.66	4.65	0.037	*
ECT5	27.48	26.6	0.88	0.09	1.68	4.98	0.030	*
ECT6	27.9	26.5	1.4	0.75	2.05	14.87	< 0.001	***

Significance levels were denoted as follows: $p < 0.05 \rightarrow *, p < 0.01 \rightarrow **, p < 0.001 \rightarrow ***$

Linear mixed-effects analysis further confirmed a significant main effect of time (F(5,210)=11.27, p<0.001) and a significant group \times time interaction (F(5,210)=2.98, p=0.021), indicating that melatonin-treated patients showed greater cognitive improvement across ECT sessions compared with placebo (Supplementary Table 1). However, within-group analyses provided clearer insights. In the melatonin arm, patients exhibited progressive improvements in global cognitive performance compared with their baseline scores. Significant gains emerged at the third ECT session, where MMSE scores increased by an average of 0.7 points (95% CI: 0.08–1.32, p < 0.05).

This improvement was sustained, with further enhancement observed by the fifth session (mean change 0.88; 95% CI: 0.17–1.60; p < 0.05). The largest improvement occurred at the final ECT session, where scores rose by 1.3 points relative to baseline (95% CI: 0.59–2.01, p < 0.01), indicating a cumulative neuroprotective effect (Table $^{\circ}$). In contrast, participants in the placebo nout the E.

significance con

Recepted Manuscript Line

Recepted Manu arm showed no significant change in MMSE performance throughout the ECT course. Although minor fluctuations were observed, none reached statistical significance compared to baseline

Table 3. Within-group Changes in MMSE

Session	Mean Change vs Baseline	p (raw)	(Holm)	95% CI Low	95% CI High Sig
Melatonin Arı	m				
ECT1	-0.1	0.770 0	.770	-0.80	0.60
ECT2	0.4	0.277 0	.555	-0.35	1.15
ECT3	0.7	0.029 0	.117	0.08	1.32
ECT4	0.56	0.147 0	.441	-0.21	1.33
ECT5	0.88	0.018 0	.088	0.17	1.60
ЕСТ6	1.3	0.001 0	.006	0.59	2.01 **
Placebo Arm					
ECT1	-0.3	0.518 1	.000	-1.25	0.65
ECT2	-0.4	0.462 1	.000	-1.51	0.71
ЕСТ3	-0.2	0.701 1	.000	-1.27	0.87
ECT4	0.1	0.836 0	.836	-0.89	1.09
ECT5	0.4	0.421 1	.000	-0.61	1.41
ЕСТ6	0.3	0.503 1	.000	-0.61	1.21

Significance levels were denoted as follows: $p < 0.05 \rightarrow *, p < 0.01 \rightarrow **, p < 0.001 \rightarrow ***$

8.2.2. Subdomain-level changes in MMSE

Subdomain analyses provided more granular insights into the cognitive effects of melatonin compared with placebo. Between-group comparisons at the final ECT session (ECT6) revealed that the largest numerical advantages for melatonin were observed in the Recall and Attention &

Calculation domains, with mean differences of approximately +0.5 and +0.4 points, respectively, relative to placebo (Fig. 2A). Smaller favorable shifts were also noted in Orientation to Place and Orientation to Time. In contrast, language-related subdomains (Naming, Repetition, Reading, and Writing) and Visuospatial ability remained essentially unchanged across groups. Conversely, a modest negative difference in Writing was observed at ECT6 (mean difference ≈ -0.08), reflecting minor decrements in both groups but more pronounced in the melatonin arm (Fig. 2A).

When changes from baseline to ECT6 were compared directly between groups (Δ Mel – Δ Plac), the superiority of melatonin became more apparent (Fig. 2B). Participants receiving melatonin exhibited significant within-group improvements in Recall (+0.7 points) and Attention & Calculation (+0.6 points), whereas placebo recipients showed only small, nonsignificant gains (+0.3 and +0.2, respectively). The difference-in-change analysis confirmed that melatonin exerted a stronger protective effect in memory and attentional domains, consistent with its hypothesized neuroprotective and antioxidant mechanisms. By contrast, orientation and procedural command subdomains demonstrated negligible or mixed changes, and language-related functions remained at ceiling performance in both groups, thereby limiting sensitivity to detect between-group differences.

8.3.Secondary Outcomes (Blood Pressure)

No significant differences were observed between groups with respect to BP outcomes. As summarized in Table 6, mean SBP values remained stable across the trial, with a small nonsignificant decrease in the melatonin arm (-1.4 mmHg) and a slight increase in the placebo arm (+0.8 mmHg); between-group p = 0.29). Similarly, DBP showed minimal within-group

fluctuations (-0.7 mmHg in the melatonin group vs. +0.5 mmHg in the placebo group), with no

Accepted Wanuscript Uncorrected Proof

8.4. Safety and Tolerability

Melatonin was generally well tolerated. No serious adverse events were observed in either group. Mild and transient side effects were reported, including headache in 2 patients (1 melatonin, 1 placebo) and daytime sleepiness in 3 patients (2 melatonin, 1 placebo). None of these events led to treatment discontinuation or affected the ECT protocol. Overall, tolerability profiles were comparable between groups.

9. Discussion

Melatonin supplementation in our trial was associated with clear cognitive benefits and an excellent safety profile. In summary, patients receiving melatonin showed a significant improvement in overall cognitive performance (as measured by MMSE) compared to baseline and controls, with the most pronounced gains observed in the Recall and Attention & Calculation subdomains of the MMSE. Notably, these cognitive improvements occurred without any detectable change in BP or other vital signs, and no serious adverse events were observed. This aligns with melatonin's known tolerability; it exerts minimal physiological side effects at therapeutic doses (Kołodziejska et al., 2025). The absence of hemodynamic effects or major side effects in our cohort underscores melatonin's safety and feasibility as a treatment option in this population.

Our findings can be contextualized alongside previous studies of both standard anti-dementia drugs and melatonin in related conditions. Cholinesterase inhibitors like donepezil are established treatments in Alzheimer's disease (AD) and typically produce modest short-term cognitive improvements (on the order of ~1–2 points on the MMSE) in mild-to-moderate dementia (Sheikh

& Ammar, 2024). For instance, a recent meta-analysis confirmed that donepezil 10 mg/day yields a significant MMSE increase (Hedges' g ≈2.3, 95% CI 1.25–3.29) versus placebo (Sheikh & Ammar, 2024), reflecting its symptomatic cognitive benefit. Memantine, an NMDA-receptor antagonist, is used mostly in moderate-to-severe AD and is known to have smaller effects on cognition but can help with behavioral symptoms like agitation and "sundowning" (Yaghmaei et al., 2024). Indeed, memantine's primary impact is often on neuropsychiatric and functional measures, whereas donepezil and other cholinesterase inhibitors directly enhance cognitive function by boosting cholinergic transmission (Yaghmaei et al., 2024). In comparison, the cognitive gains we observed with melatonin, particularly in memory recall and attention, are notable because they approach the magnitude of benefit seen with standard cognitive enhancers in mild dementia. A 2021 systematic review similarly found that >12 weeks of melatonin therapy in AD patients led to a mean MMSE improvement of about 1.8 points relative to placebo (Sumsuzzman et al., 2021), especially in mild-stage AD. Such an effect size is comparable to that of cholinesterase inhibitors in early disease, suggesting melatonin's efficacy is not merely anecdotal. Historically, trials of melatonin for cognitive impairment have produced mixed results (Riemersma-van der Lek, 2008), with some early studies reporting no significant benefit. However, more recent evidence has shifted this perspective. For example, a network meta-analysis of dementia interventions concluded that melatonin may be a promising disease-modifying treatment for cognitive decline in mild AD and mild cognitive impairment (Modabbernia et al., 2011; Tseng et al., 2022; Wang et al., 2017; Xu et al., 2015). This implies melatonin could offer more than symptomatic relief, potentially slowing neurodegenerative processes, a stark contrast to donepezil and memantine, which are primarily symptomatic treatments. It is also worth noting that melatonin has been investigated in other clinical contexts of cognitive dysfunction. In post-ECT

cognitive impairment (depressed patients undergoing electroconvulsive therapy), a head-to-head trial found melatonin (3 mg) was less effective than memantine (5 mg) at alleviating acute memory deficits (Sarraf et al., 2020). Melatonin recipients in that study actually showed a slight decline in MMSE post-ECT, whereas memantine-treated patients improved (Sarraf et al., 2020). This outcome highlights that melatonin's cognitive benefits may be context-dependent; it appears more useful in chronic neurodegenerative or age-related cognitive impairment than in preventing acute procedure-related deficits. Similarly, exploratory studies in surgical patients have hinted at neuroprotective effects of melatonin on postoperative cognitive dysfunction, particularly in memory and attention domains (Tavares et al., 2025), though larger trials are needed for confirmation. Overall, our results strengthen the growing body of literature suggesting melatonin can meaningfully improve cognitive function in conditions like early AD or MCI (Sumsuzzman et al., 2021). A key distinction is that melatonin's benefits come without the cholinergic side effects (e.g., gastrointestinal upset) seen with donepezil or the neurologic side effects of memantine, making melatonin an appealing alternative or adjunct therapy. Given melatonin's different mechanism of action, there is also potential for combination therapy; just as donepezil plus memantine together yield better cognitive outcomes than either alone in advanced AD (Yaghmaei et al., 2024), melatonin might usefully complement standard drugs by addressing pathology (e.g., sleep disruption, oxidative stress) that those therapies do not.

Mechanistically, the cognitive enhancement observed with melatonin in our study is biologically plausible based on its neuroprotective actions. Melatonin is a pleiotropic molecule with robust antioxidant and anti-inflammatory properties in the central nervous system. It directly scavenges free radicals, inhibits lipid peroxidation, and stimulates antioxidant enzymes (such as superoxide dismutase and glutathione peroxidase), while concurrently suppressing pro-inflammatory

signaling pathways (Kołodziejska et al., 2025). These actions help to protect neurons from oxidative stress and inflammation, factors strongly implicated in cognitive decline and dementia. Notably, melatonin has been shown to preserve synaptic function and prevent neuronal loss in hippocampal and cortical regions that subserve memory and attention. For example, preclinical studies demonstrate that melatonin can restore cholinergic neurotransmission in the hippocampus, increasing acetylcholine availability by upregulating choline acetyltransferase and other components of the cholinergic system (Chen et al., 2018). This corresponds well with our finding of improved memory recall (a hippocampal-dependent task) and enhanced attention/calculation, since the cholinergic system is crucial for both memory encoding and sustained attention. In models of AD, melatonin has repeatedly shown the ability to reduce neuropathological burdens, it attenuates \(\beta\)-amyloid accumulation and tau hyperphosphorylation, and it limits microglial activation and release of inflammatory cytokines (Kołodziejska et al., 2025; Zhang et al., 2025). Each of these effects could translate into preserved cognitive function. Reduced amyloid and tau pathology would help maintain synaptic integrity (hence better memory), and lower neuroinflammation could improve signaling in attention-related neural networks. In addition, melatonin's role as a circadian regulator likely contributes to its cognitive benefits. Sleep and circadian rhythm disruptions are known to exacerbate cognitive impairment; poor sleep quality can hasten cognitive decline in the elderly by aggravating β-amyloid deposition and other mechanisms (Tseng et al., 2022). Melatonin, by entraining sleep-wake cycles and improving sleep efficiency, addresses this often-overlooked aspect of brain health. Indeed, trials have found that melatonin (especially at low doses <5 mg) significantly improves sleep efficiency in patients with mild cognitive impairment and Parkinson's disease (Germain et al., 2023), and melatonin is well recognized to improve insomnia in older adults. Better sleep in turn may sharpen daytime alertness

and cognitive performance, particularly attention and executive function, which are highly sensitive to sleep loss. Furthermore, during deep sleep, the brain's glymphatic system clears metabolic waste, including $A\beta$; melatonin's promotion of sleep could thus facilitate brain clearance of toxins that impair cognition (Zhang et al., 2025). Taken together, melatonin's antioxidant/anti-inflammatory effects and its normalization of circadian rhythms create a synergistic environment for cognitive improvement. The preferential gains we observed in memory and attention might reflect exactly these mechanisms at work – melatonin protecting the hippocampus and frontal cortex from oxidative injury while also ensuring the brain has restorative sleep to consolidate memory and support attention networks.

This study has several strengths that bolster confidence in the findings. To our knowledge, it is one of the first double-blind, placebo-controlled RCTs examining melatonin's cognitive effects in this patient population. The double-blind design (blinding participants, caregivers/clinicians, and outcome assessors) minimizes bias in outcome reporting and assessment. Treatment adherence was high throughout the trial, and drop-out rates were low, suggesting the intervention was acceptable to patients (likely owing to melatonin's benign side-effect profile). We also used a structured cognitive battery (MMSE with subdomain analysis) to detect domain-specific effects, which provided insight into where melatonin's impact is most pronounced (i.e., memory and attention improvements). However, certain limitations must be acknowledged. The sample size was modest, and the trial was conducted at a single center, which may limit generalizability. A larger sample might have allowed detection of more subtle effects on other cognitive domains or subgroup differences. Our follow-up duration was relatively short (on the order of a few months); thus, we primarily captured short-term cognitive changes. It remains uncertain whether melatonin's benefits persist or grow with longer-term use; longitudinal studies are needed to

determine if melatonin can slow the trajectory of cognitive decline over years. Additionally, while we measured global cognition and simple subdomains, more sensitive neuropsychological tests (e.g., detailed memory tests or executive function tasks) were not included, which could have provided a finer-grained understanding of melatonin's cognitive effects. Finally, our exclusion criteria omitted patients with other major psychiatric comorbidities (such as schizophrenia or schizoaffective disorder), but the trial specifically enrolled patients with BD undergoing ECT. While melatonin is generally safe in BD, there remains some theoretical concern that exogenous melatonin could rarely precipitate manic episodes. However, no such cases occurred in our study.

Melatonin demonstrated a favorable safety profile and ease of use, emerging as a practical adjunct or alternative for cognitive impairment. It is inexpensive, widely available, and generally well tolerated, in contrast to prescription cognitive enhancers that often cause gastrointestinal or cardiac side effects. Our results suggest that a nightly regimen (5–10 mg) could benefit older patients with mild cognitive deficits, particularly when sleep disturbances or circadian irregularities are present. Improvements in memory and attention may translate into better daily functioning, and even stabilization of decline would be clinically meaningful.

Nevertheless, melatonin should be prescribed thoughtfully, with appropriate patient education on evening dosing and gradual onset of benefit. Caution is warranted in special populations such as BD, where rare cases of mania induction have been reported (Bourin, 2024; McCarthy et al., 2022). Looking forward, large multi-center RCTs with longer follow-up are needed to validate these findings, define optimal dosing, and assess whether melatonin exerts disease-modifying effects.

10. Conclusion

This randomized, double-blind, placebo-controlled trial provides novel evidence that adjunctive melatonin can attenuate ECT-related cognitive impairment in patients with BD. Compared with placebo, melatonin was associated with significant improvements in global cognition, with the strongest effects in recall and attention/calculation domains, while maintaining an excellent safety profile. No major adverse events or hemodynamic changes were observed, underscoring its tolerability. These findings highlight melatonin as a simple, inexpensive, and widely accessible therapeutic option to support cognition in this vulnerable population.

Abbreviations:

AD — Alzheimer's disease

AHA — American Heart Association

BD — Bipolar disorder

BP — Blood pressure

CI — Confidence interval

CONSORT — Consolidated Standards of Reporting Trials

CRFs — Case report forms

CSF — Cerebrospinal fluid

DBP — Diastolic blood pressure

DSM-5-TR — Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision

EEG — Electroencephalogram

ECT — Electroconvulsive therapy

GABA — Gamma-aminobutyric acid

IRCT — Iranian Registry of Clinical Trials

MCI — Mild cognitive impairment

MMSE — Mini-Mental State Examination

NMDA — N-methyl-D-aspartate (receptor)

NF-κB — Nuclear factor kappa-light-chain-enhancer of activated B cells

RCT — Randomized controlled trial

ROS — Reactive oxygen species

SBP — Systolic blood pressure

SD — Standard deviation

SNOSE — Sequentially Numbered, Opaque, Sealed Envelopes

SPSS — Statistical Package for the Social Sciences

Acknowledgements

An AI-assisted tool (QuillBot) was used under the authors' supervision exclusively to improve academic language clarity and formatting. No AI tool influenced the scientific content, data analysis, or conclusions of this work.

References:

American Psychiatric Association. (2022). *Diagnostic and Statistical Manual of Mental Disorders*. American Psychiatric Association Publishing. https://doi.org/10.1176/appi.books.9780890425787

Asmar, R., Stergiou, G., de la Sierra, A., Jelaković, B., Millasseau, S., Topouchian, J., Shirai, K., Blacher, J., Avolio, A., Jankowski, P., Parati, G., Bilo, G., Rewiuk, K., Mintale, I., Rajzer, M., Agabiti-Rosei, E., Ince, C., Postadzhiyan, A., Zimlichman, R., ... Kotsis, V. (2024). Blood pressure measurement and assessment of arterial structure and function: an expert group position paper. *Journal of Hypertension*, 42(9), 1465–1481. https://doi.org/10.1097/HJH.000000000000003787

Bourin, M. (2024). Bipolar Disorders and Seasonality. *Journal of Mental Health Disorders*, 4(1), 50–56. https://doi.org/10.33696/mentalhealth.4.025

Burdick, K. E., Russo, M., Frangou, S., Mahon, K., Braga, R. J., Shanahan, M., & Malhotra, A. K. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: clinical implications. *Psychological Medicine*, *44*(14), 3083–3096. https://doi.org/10.1017/S0033291714000439

Carretero, V. J., Ramos, E., Segura-Chama, P., Hernández, A., Baraibar, A. M., Álvarez-Merz, I., Muñoz, F. L., Egea, J., Solís, J. M., Romero, A., & Hernández-Guijo, J. M. (2023). Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. *Antioxidants*, *12*(10), 1844. https://doi.org/10.3390/antiox12101844

Chang, H.-M., Lin, H.-C., Cheng, H.-L., Liao, C.-K., Tseng, T.-J., Renn, T.-Y., Lan, C.-T., & Chen, L.-Y. (2021). Melatonin Successfully Rescues the Hippocampal Molecular Machinery and Enhances Anti-oxidative Activity Following Early-Life Sleep Deprivation Injury. *Antioxidants*, 10(5), 774. https://doi.org/10.3390/antiox10050774

Chen, B. H., Park, J. H., Kim, D. W., Park, J., Choi, S. Y., Kim, I. H., Cho, J. H., Lee, T.-K., Lee, J. C., Lee, C.-H., Hwang, I. K., Kim, Y.-M., Yan, B. C., Kang, I. J., Shin, B. N., Lee, Y. L., Shin, M. C., Cho, J. H., Lee, Y. J., ... Ahn, J. H. (2018). Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. *ACS Chemical Neuroscience*, *9*(8), 2016–2024. https://doi.org/10.1021/acschemneuro.7b00278

Choe, S., Wang, H., DiNardo, C. D., Stein, E. M., de Botton, S., Roboz, G. J., Altman, J. K., Mims, A. S., Watts, J. M., Pollyea, D. A., Fathi, A. T., Tallman, M. S., Kantarjian, H. M., Stone, R. M., Quek, L., Konteatis, Z., Dang, L., Nicolay, B., Nejad, P., ... Wu, B. (2020). Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. *Blood Advances*, *4*(9), 1894–1905. https://doi.org/10.1182/bloodadvances.2020001503

Clark, L., Dean, A., Mitchell, A., & Torgerson, D. J. (2021). Envelope use and reporting in randomised controlled trials: A guide for researchers. *Research Methods in Medicine & Health Sciences*, 2(1), 2–11. https://doi.org/10.1177/2632084320957204

Colwell, M. J., Tagomori, H., Chapman, S., Gillespie, A. L., Cowen, P. J., Harmer, C. J., &

Murphy, S. E. (2022). Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. *Translational Psychiatry*, *12*(1), 484. https://doi.org/10.1038/s41398-022-02249-6

Fetahovic, E., Janjic, V., Muric, M., Jovicic, N., Radmanovic, B., Rosic, G., Selakovic, D., Filipovic, M., & Muric, N. (2025). Neurobiological Mechanisms of Electroconvulsive Therapy: Molecular Perspectives of Brain Stimulation. *International Journal of Molecular Sciences*, 26(12), 5905. https://doi.org/10.3390/ijms26125905

First, M. B., Yousif, L. H., Clarke, D. E., Wang, P. S., Gogtay, N., & Appelbaum, P. S. (2022). DSM-5-TR: overview of what's new and what's changed. *World Psychiatry*, 21(2), 218–219. https://doi.org/10.1002/wps.20989

Freire, T. F. V., Rocha, N. S. da, & Fleck, M. P. de A. (2017). The association of electroconvulsive therapy to pharmacological treatment and its influence on cytokines. *Journal of Psychiatric Research*, 92, 205–211. https://doi.org/10.1016/j.jpsychires.2017.05.004

Germain, N., Rouabhia, D., Morin, M., & Archambault, P. (2023). 1625 MELATONIN MODESTLY IMPROVES SLEEP EFFICIENCY IN PATIENTS WITH NEUROCOGNITIVE DISORDERS: A SYSTEMATIC REVIEW AND META-ANALYSIS. *Age and Ageing*, 52(Supplement_2). https://doi.org/10.1093/ageing/afad104.088

Hartman, A. K., Borchardt, J. N., & Harris Bozer, A. L. (2017). Making Primary Literature Come Alive in the Classroom. *Journal of Undergraduate Neuroscience Education : JUNE : A Publication of FUN, Faculty for Undergraduate Neuroscience*, 15(2), R24–R28. http://www.ncbi.nlm.nih.gov/pubmed/28690446

Hatamkhani, S., Roshan, S., & Shiva, A. (2024). Role of Melatonin as an Adjunctive Treatment for Depression and Cognitive Impairment in Hemodialysis Patients: A Randomized, Double-Blind Clinical Trial. *Iranian Journal of Psychiatry*. https://doi.org/10.18502/ijps.v20i1.17400

Hopewell, S., Chan, A.-W., Collins, G. S., Hróbjartsson, A., Moher, D., Schulz, K. F., Tunn, R., Aggarwal, R., Berkwits, M., Berlin, J. A., Bhandari, N., Butcher, N. J., Campbell, M. K., Chidebe, R. C. W., Elbourne, D., Farmer, A., Fergusson, D. A., Golub, R. M., Goodman, S. N., ... Boutron, I. (2025). CONSORT 2025 Statement. *JAMA*, 333(22), 1998. https://doi.org/10.1001/jama.2025.4347

Jiang, J., Chen, Y., Lin, Z., Liu, S., Chen, X., & Chen, Q. (2025). Global, regional, and national burden of bipolar disorder, 1990–2021: Analysis of data from the global burden of disease study 2021. *Journal of Affective Disorders*, 389, 119638. https://doi.org/10.1016/j.jad.2025.119638

Khodamoradi, Z., Beheshti, M., & Khodamoradi, M. (2020). Construct and validity of Persian Mini Mental Status Examination in illiterate elderly. *Alzheimer's & Dementia*, 16(S7). https://doi.org/10.1002/alz.036864

Kim, J., & Shin, W. (2014). How to Do Random Allocation (Randomization). *Clinics in Orthopedic Surgery*, 6(1), 103. https://doi.org/10.4055/cios.2014.6.1.103

Kołodziejska, R., Woźniak, A., Bilski, R., Wesołowski, R., Kupczyk, D., Porzych, M., Wróblewska, W., & Pawluk, H. (2025). Melatonin—A Powerful Antioxidant in Neurodegenerative Diseases. *Antioxidants*, *14*(7), 819. https://doi.org/10.3390/antiox14070819

McCarthy, M. J., Gottlieb, J. F., Gonzalez, R., McClung, C. A., Alloy, L. B., Cain, S., Dulcis, D., Etain, B., Frey, B. N., Garbazza, C., Ketchesin, K. D., Landgraf, D., Lee, H., Marie-Claire, C., Nusslock, R., Porcu, A., Porter, R., Ritter, P., Scott, J., ... Murray, G. (2022). Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. *Bipolar Disorders*, 24(3), 232–263. https://doi.org/10.1111/bdi.13165

Millett, C. E., Monir, F., & Sanelli, P. (2025). The role of blood–brain barrier dysfunction in cognitive impairments in bipolar disorder—a narrative review. *Frontiers in Human Neuroscience*, 19. https://doi.org/10.3389/fnhum.2025.1504575

Modabbernia, A., Cohen, D. A., Taslimi, S., Ashrafi, M., & McCleery, J. (2011). Pharmacotherapies for sleep disturbances in Alzheimer's disease. In A. Modabbernia (Ed.), *Cochrane Database of Systematic Reviews*. John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD009178

Nicoloro-SantaBarbara, J., Majd, M., Miskowiak, K., Burns, K., Goldstein, B. I., & Burdick, K. E. (2023). Cognition in Bipolar Disorder: An Update for Clinicians. *Focus*, *21*(4), 363–369. https://doi.org/10.1176/appi.focus.20230012

Porter, R. J., Baune, B. T., Morris, G., Hamilton, A., Bassett, D., Boyce, P., Hopwood, M. J., Mulder, R., Parker, G., Singh, A. B., Outhred, T., Das, P., & Malhi, G. S. (2020). Cognitive side-effects of electroconvulsive therapy: what are they, how to monitor them and what to tell patients. *BJPsych Open*, 6(3), e40. https://doi.org/10.1192/bjo.2020.17

Riemersma-van der Lek, R. F. (2008). Effect of Bright Light and Melatonin on Cognitive and Noncognitive Function in Elderly Residents of Group Care Facilities. *JAMA*, 299(22), 2642. https://doi.org/10.1001/jama.299.22.2642

Sarraf, N., Badri, T., Keshvari, N., Ghassab-sahebkar, A., Qobadighadikolaei, R., & Abbasinazari, M. (2020). Comparison of the efficacy and safety of melatonin and memantine in the alleviation of cognitive impairments induced by electroconvulsive therapy: A randomized clinical trial. *Journal of Clinical Neuroscience*, 74, 146–150. https://doi.org/10.1016/j.jocn.2020.02.011

Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. *Biochemia Medica*, *31*(1), 27–53. https://doi.org/10.11613/BM.2021.010502

Sheikh, M., & Ammar, M. (2024). Efficacy of 5 and 10 mg donepezil in improving cognitive function in patients with dementia: a systematic review and meta-analysis. *Frontiers in Neuroscience*, 18. https://doi.org/10.3389/fnins.2024.1398952

Sivamaruthi, B. S., Raghani, N., Chorawala, M., Bhattacharya, S., Prajapati, B. G., Elossaily,

G. M., & Chaiyasut, C. (2023). NF-κB Pathway and Its Inhibitors: A Promising Frontier in the Management of Alzheimer's Disease. *Biomedicines*, 11(9), 2587. https://doi.org/10.3390/biomedicines11092587

Sumsuzzman, D. M., Choi, J., Jin, Y., & Hong, Y. (2021). Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer's disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. *Neuroscience & Biobehavioral Reviews*, 127, 459–473. https://doi.org/10.1016/j.neubiorev.2021.04.034

Talbot, N. C., Luther, P. M., Spillers, N. J., Ragland, A. R., Kidder, E. J., Kelkar, R. A., Varrassi, G., Ahmadzadeh, S., Shekoohi, S., & Kaye, A. D. (2023). Neuroprotective Potential of Melatonin: Evaluating Therapeutic Efficacy in Alzheimer's and Parkinson's Diseases. *Cureus*. https://doi.org/10.7759/cureus.50948

Targum, S. D., Wedel, P. C., & Fava, M. (2015). Changes in cognitive symptoms after a buspirone–melatonin combination treatment for Major Depressive Disorder. *Journal of Psychiatric Research*, 68, 392–396. https://doi.org/10.1016/j.jpsychires.2015.04.024

Tavares, C., Memória, C. M., da Costa, L. G. V., Quintão, V. C., Antunes, A. A., Teodoro, D., & Carmona, M. J. C. (2025). Effect of melatonin on postoperative cognitive function in elderly patients submitted to transurethral resection of the prostate under spinal anesthesia. *Clinics*, 80, 100562. https://doi.org/10.1016/j.clinsp.2024.100562

Tseng, P.-T., Zeng, B.-Y., Chen, Y.-W., Yang, C.-P., Su, K.-P., Chen, T.-Y., Wu, Y.-C., Tu, Y.-K., Lin, P.-Y., Carvalho, A. F., Stubbs, B., Matsuoka, Y. J., Li, D.-J., Liang, C.-S., Hsu, C.-W., Sun, C.-K., Cheng, Y.-S., Yeh, P.-Y., & Shiue, Y.-L. (2022). The Dose and Duration-dependent Association between Melatonin Treatment and Overall Cognition in Alzheimer's Dementia: A Network Meta- Analysis of Randomized Placebo-Controlled Trials. *Current Neuropharmacology*, 20(10), 1816–1833. https://doi.org/10.2174/1570159X20666220420122322

Van Den Bossche, M. J. A., Emsell, L., Dols, A., Vansteelandt, K., De Winter, F.-L., Van den Stock, J., Sienaert, P., Stek, M. L., Bouckaert, F., & Vandenbulcke, M. (2019). Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. *Translational Psychiatry*, *9*(1), 191. https://doi.org/10.1038/s41398-019-0530-6

Verdijk, J. P. A. J., van Kessel, M. A., Oud, M., Kellner, C. H., Hofmeijer, J., Verwijk, E., & van Waarde, J. A. (2022). Pharmacological interventions to diminish cognitive side effects of electroconvulsive therapy: A systematic review and meta-analysis. *Acta Psychiatrica Scandinavica*, 145(4), 343–356. https://doi.org/10.1111/acps.13397

Vorland, C. J., Brown, A. W., Dawson, J. A., Dickinson, S. L., Golzarri-Arroyo, L., Hannon, B. A., Heo, M., Heymsfield, S. B., Jayawardene, W. P., Kahathuduwa, C. N., Keith, S. W., Oakes, J. M., Tekwe, C. D., Thabane, L., & Allison, D. B. (2021). Errors in the implementation, analysis, and reporting of randomization within obesity and nutrition research: a guide to their avoidance. *International Journal of Obesity*, 45(11), 2335–2346. https://doi.org/10.1038/s41366-021-00909-7

Wang, Y., Zheng, W., Ng, C. H., Ungvari, G. S., Wei, W., & Xiang, Y. (2017). Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer's disease.

International Journal of Geriatric Psychiatry, 32(1), 50–57. https://doi.org/10.1002/gps.4571

Xu, J., Wang, L.-L., Dammer, E. B., Li, C.-B., Xu, G., Chen, S.-D., & Wang, G. (2015). Melatonin for Sleep Disorders and Cognition in Dementia. *American Journal of Alzheimer's Disease & Other Dementias*®, *30*(5), 439–447. https://doi.org/10.1177/1533317514568005

Yaghmaei, E., Lu, H., Ehwerhemuepha, L., Zheng, J., Danioko, S., Rezaie, A., Sajjadi, S. A., & Rakovski, C. (2024). Combined use of Donepezil and Memantine increases the probability of five-year survival of Alzheimer's disease patients. *Communications Medicine*, 4(1), 99. https://doi.org/10.1038/s43856-024-00527-6

capted Manuscript Incorrection Zhang, Z., Xue, P., Bendlin, B. B., Zetterberg, H., De Felice, F., Tan, X., & Benedict, C. (2025). Melatonin: A potential nighttime guardian against Alzheimer's. Molecular Psychiatry, 30(1), 237–

Figure Legends:

Figure 1. CONSORT flow diagram of the trial

Flow diagram illustrating patient screening, randomization, allocation, follow-up, and analysis. A total of 90 patients were assessed for eligibility; 23 were excluded (17 with schizophrenia and 6 for other reasons). Sixty-seven patients were randomized to receive either melatonin (n = 36) or a placebo (n = 31). After dropouts (13 and 8, respectively), 23 participants in each group completed the study and were included in the final analysis.

Figure 2. Subdomain-level MMSE outcomes

- (A) Between-group differences at ECT6 (Melatonin Placebo) with mean and 95% CI. Positive values favor melatonin.
- (B) Difference-in-change ($\Delta Mel \Delta Plac$) from baseline to ECT6, showing net treatment effects. The largest benefits were seen in Recall and Attention & Calculation, while language subdomains remained at ceiling.
- Figure 3. Blood pressure outcomes. (A) Line plots of mean SBP and DBP with 95% confidence intervals at baseline and after the final ECT session (ECT6) in the melatonin and placebo groups.
- (B) Bar plots of changes from baseline (ΔSBP, ΔDBP) with 95% confidence intervals, illustrating net effects between groups. No significant between-group differences were observed.

Supplementary

Table 1. Linear Mixed-Effects Model Results for Total MMSE Score Across ECT Sessions.

Effect	Num	df Den d	f F	p-value
Time	5	210	11.27	7 < 0.001
Group	1	42	3.01	0.089
Group × Ti	me 5	210	2.98	0.021

Model specification: Linear mixed-effects model with repeated factor Time (6 levels: baseline to ECT6) and fixed factor Group (melatonin vs. placebo). Random intercepts per participant were included. The Kenward–Roger approximation was applied for denominator degrees of freedom.

Abbreviations: MMSE, Mini-Mental State Examination; ECT, Electroconvulsive therapy; df, degrees of freedom; F, F-statistic; p, probability value.